# **Real Options**

PHILEDELPHILEONES

Olivier Levyne (2020)

# DCF limits and usefulness of Real Options

#### Limits of the DCF approach

- Possibility to fine-tune the discount rate i.e. the WACC according to the assumptions that are taken into account for the market risk premium and for the beta
- Uncertainty of future FCF
- Book value of debt versus economic value of equity

Usefulness of Real Options for Corporate Valuation purpose

- In options pricing models (Black & Scholes, Cox-Ross-Rubinstein...)
  - Discounting based on an undisputable risk-free rate
  - No use to estimate future FCF: only their volatility is considered
- Possibility to get the economic value of debt based on an option pricing models

Other applications for valuation purpose: option to exit, patent, option du exit a joint venture, oil field concession...

## Equity value according to Black & Scholes



- Assumption: debt = zero coupon
- Implicit right for the shareholders
  - Repay the debt to buy the assets, when the debt is maturing, if the EV is higher than the nominal value of the debt to be repaid (D)
  - Abandon the firm to its lenders, if EV < D, thanks to the limited liability of shareholders
- Consequence: wealth of shareholders = premium of a call on assets, its strike price being the nominal value of the debt to be repaid
  - S = spot price of the underlying asset = EV
  - E = strike price = amount to be paid should the call be exercised = D
  - τ = debt's maturity, in years
  - $\sigma$  = volatility of the underlying asset = EV's volatility
  - r = risk-free rate, in continuous time
- Formula : Equity value =  $EV. \Phi(d_1) De^{-r\tau} \Phi(d_2)$

$$d_{1} = \frac{\ln\left(\frac{EV}{D}\right) + \left(r + \frac{\sigma^{2}}{2}\right) \cdot \tau}{\sigma\sqrt{\tau}}, d_{2} = d_{1} - \sigma\sqrt{\tau}$$

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt$$

Nota:  $\Phi(x)$  is provided by Excel: normsdist(x)

| S = EV                    | 120   |
|---------------------------|-------|
| $\mathbf{E} = \mathbf{D}$ | 100   |
| r discrete                | 2,00% |
| r continuous              | 1,98% |
| τ                         | 10    |
| σ                         | 40%   |
| $d_1$                     | 0,93  |
| $d_2$                     | -0,33 |
| $\Phi(d_1)$               | 0,82  |
| $\Phi(d_1)$               | 0,37  |
| Probability of bankruptcy | 63%   |
| C = Equity by B&S         | 69    |



## Debt value and Merton's contributions

| EV                               |                                        |                           | 120   |
|----------------------------------|----------------------------------------|---------------------------|-------|
| Debt (face value)                |                                        |                           | 100   |
| r continuous                     | 2%                                     |                           |       |
| $\tau$ (time to expiration)      |                                        |                           | 10    |
| σ(A)                             |                                        |                           | 40%   |
| $\Phi(d_1)$                      |                                        |                           | 0,83  |
| $\Phi(d_2)$                      |                                        |                           | 0,37  |
| Equity value                     |                                        |                           | 69    |
| Probability of default           |                                        |                           | 62,9% |
| Economic value of deb            | 51,34                                  |                           |       |
| Economic value of unris          | ky debt = $PV$ of de                   | bt's face value (using r) | 81,87 |
| Recovery rate given de           | <b>fault</b> = $\Phi(-d_1)/\Phi(-d_1)$ | d <sub>2</sub> )          | 28%   |
| Recovery given default           | $= [\Phi(-d_1)/\Phi(-d_2)].E$          | EV                        | 33,36 |
| <b>LGD</b> = Economic value      | of unrisky debt - F                    | Recovery given default    | 48,51 |
| Expected LGD = $\Phi(-d_2)$ .LGD |                                        |                           | 30,53 |
| Check: economic value            | 51,34                                  |                           |       |
| $\Phi(-d_1)$                     |                                        |                           | 0,17  |
| d=D.exp(-rt)/V                   |                                        |                           | 0,68  |
| 1/d                              |                                        |                           | 1,47  |
| Spread                           |                                        |                           | 4,7%  |
| Cost of debt all in              |                                        |                           | 6,7%  |

#### • Notations

- D = nominal value of the debt to be repaid
- B = economic value of debt
- Reminder: Equity value =  $EV. \Phi(d_1) De^{-r\tau} \Phi(d_2)$
- $\Phi(d_2)$  = probability for the shareholders to exercise their call = probability for the firm to be "in bonis"
- 1-  $\Phi(d_2) = \Phi(-d_2)$  = probability of bankruptcy
- B = EV Equity value
- $B = EV. \Phi(-d_1) + De^{-r\tau} \Phi(d_2)$
- Spread on corporate debt = R (full cost of debt) r (risk free rate)

• 
$$R - r = -\frac{1}{\tau} \ln[\Phi(d_2) + \frac{EV}{De^{-r\tau}} \Phi(-d_1)]$$

• Breakdown of the economic value of debt  $B = De^{-r\tau} - \Phi(-d_2) \left[ De^{-r\tau} - \frac{\Phi(-d_1)}{\Phi(-d_2)} EV \right]$   $\frac{\Phi(-d_1)}{\Phi(-d_2)} = \text{recovery rate given default}$   $De^{-r\tau} - \frac{\Phi(-d_1)}{\Phi(-d_2)} EV = \text{Loss Given Default}$ 

### Option to expand



٠

•

- Acquisition of a subsidiary in Uruguay to test the South American market
  - Price consideration: 100
  - DCF valuation: 90
  - NPV = -10
- Investment in Uruguay to be looked upon as an option to buy a bigger subsidiary in 3 years in Brazil for a consideration of 1000 (to be paid in 3 years), whereas its DCF value, which has just been calculated, is 900. The volatility of its FCF is 40% and the risk-free rate is 2%
  - E = 1000
  - S = 900
  - τ = 3 years
  - σ = 40%
  - r = 2%
- Value based on Black & Scholes = 229
- Adjusted NAV = -10 + 229 = 119 > 0

| S                                                    | 900   |
|------------------------------------------------------|-------|
| Е                                                    | 1000  |
| r discrete                                           | 2,00% |
| $r \text{ continuous} = \ln(1 + r \text{ discrete})$ | 1,98% |
| τ                                                    | 3     |
| σ                                                    | 40%   |
| d1                                                   | 0,28  |
| d2                                                   | -0,41 |
| $\Phi(d_1)$                                          | 0,61  |
| $\Phi(d_2)$                                          | 0,34  |
| C by B&S                                             | 229   |

#### Patent's value

| S = EV                                                                                | 800   |
|---------------------------------------------------------------------------------------|-------|
| Annual cost of delay = $1/\tau = q$                                                   | 10%   |
| $\mathbf{S'} = \mathbf{EV}.\mathbf{exp}^{-1/\tau.\tau} = \mathbf{EV}.\mathbf{e}^{-1}$ | 294   |
| $\mathbf{E} = \mathbf{I}_0$                                                           | 1000  |
| r discrete                                                                            | 2,00% |
| r continuous                                                                          | 1,98% |
| τ                                                                                     | 10    |
| σ                                                                                     | 40%   |
| d1                                                                                    | -0,18 |
| d2                                                                                    | -1,44 |
| $\Phi(d_1)$                                                                           | 0,43  |
| $\Phi(d_2)$                                                                           | 0,07  |
| Expected future value of $EV = EV.e^{rt}.\Phi(d_1)$                                   | 154   |
| Expected cash outfow = $I_0.\Phi(d_2)$                                                | 75    |
| $EV.e^{rt}.\Phi(d_1)-I_0.\Phi(d2)$                                                    | 80    |
| $e^{-rt}$ .[EV. $e^{rt}$ . $\Phi(d_1)$ -I <sub>0</sub> . $\Phi(d_2)$ ]                | 65    |
| C = Value of the patent                                                               | 65    |

- Assumptions
  - Possibility to buy a patent that will enable to manufacture a new drug
  - CAPEX to equip the factory that will manufacture the drug: 1000
  - Sum of present values of CF to be generated by the project: 800
  - Volatility of CF = 40%
  - Lifetime of the patent: 10 years
  - Risk free rate: 2%
- Patent to be looked upon as an option to equip the factory for a a consideration of 1000
  - Investments to be performed when the NPV (currently amounting to 800-1000=-200) will be positive
  - Possibility for the sum of present values of CF to increase and reach at least 1000, thanks to their volatility
  - Merton's formula to be used in order to include the annual cost of delay  $(\frac{1}{\tau})$ , to be looked upon as a dividend yield ( $\delta$ ) from an option pricing model's point of view: replacement, in the Black and Scholes formula, of *S* by S' with

$$S' = Se^{-\delta\tau} = Se^{-\frac{1}{\tau}\cdot\tau} = \frac{S}{\epsilon}$$

### Value of an oil field concession

| Option ref                       | 1           | 2     |     | 1   | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|----------------------------------|-------------|-------|-----|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| S <sub>0</sub>                   | 93          | 93    |     | 93  | 93    | 93    | 93    | 93    | 93    | 93    | 93    | 93    | 93    |
| Convenience yield q              | 0,00%       | 0,00% |     |     | 0,00% | 0,00% | 0,00% | 0,00% | 0,00% | 0,00% | 0,00% | 0,00% | 0,00% |
| S <sub>0</sub> .e <sup>-qt</sup> | 93          | 93    |     |     | 93    | 93    | 93    | 93    | 93    | 93    | 93    | 93    | 93    |
| E                                | 50          | 50    |     | 50  | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    | 50    |
| r discrete                       |             | 2,00% |     |     | 2,00% | 2,00% | 2,00% | 2,00% | 2,00% | 2,00% | 2,00% | 2,00% | 2,00% |
| r continuous                     |             | 1,98% |     |     | 1,98% | 1,98% | 1,98% | 1,98% | 1,98% | 1,98% | 1,98% | 1,98% | 1,98% |
| σ                                |             | 80,0% |     |     | 80%   | 80%   | 80%   | 80%   | 80%   | 80%   | 80%   | 80%   | 80%   |
| τ                                |             | 5     |     |     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
| d <sub>1</sub>                   |             | 1,30  |     |     | 1,20  | 1,15  | 1,18  | 1,24  | 1,30  | 1,36  | 1,42  | 1,48  | 1,53  |
| d <sub>2</sub>                   |             | -0,49 |     |     | 0,40  | 0,02  | -0,20 | -0,36 | -0,49 | -0,60 | -0,70 | -0,79 | -0,87 |
| $\Phi(d_1)$                      |             | 0,90  |     |     | 0,89  | 0,87  | 0,88  | 0,89  | 0,90  | 0,91  | 0,92  | 0,93  | 0,94  |
| $\Phi(d_2)$                      |             | 0,31  |     |     | 0,66  | 0,51  | 0,42  | 0,36  | 0,31  | 0,27  | 0,24  | 0,22  | 0,19  |
| C per barrel in \$               | 43          | 70    |     | 43  | 50    | 57    | 62    | 66    | 70    | 73    | 75    | 77    | 79    |
| Output capacity                  | 5           | 5     |     | 1   | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| C in M\$                         | 215         | 349   |     | 43  | 50    | 57    | 62    | 66    | 70    | 73    | 75    | 77    | 79    |
| Value of the concession (M\$     | )           | 564   |     |     | 653   |       |       |       |       |       |       |       |       |
|                                  |             |       |     |     |       |       |       |       |       |       |       |       |       |
| Number of decisions to open th   | e tap or no | t     | 1   | 2   | 10    |       |       |       |       |       |       |       |       |
| Value of the concession (M\$)    |             | -     | 430 | 564 | 653   |       |       |       |       |       |       |       |       |





RFP to get the concession of an oil field for 10 years

- Spot price of 1 barrel: 93 \$
- Full cost to product 1 barrel: 50 \$
- Volatility of oil: 80%
- Risk-free rate: 2%
- Installed capacity: 1 million barrels
   per year
- Periodicity of the decision to open the tap or not
  - Once a year: then concession's value = value of a portfolio of 10 options to open the tap, the 1<sup>st</sup> one being immediately exercised or not
  - Every 5 years: then concession's value = value of a portfolio of 2 options to open the tap, the 1<sup>st</sup> one being immediately exercised or not
  - Once i.e. now: then concession's value = value of 1 call that has no time premium

= (93 – 50) x 1 000 000 x 10 = 430 M\$

• Assumed no convenience yield