

Real Options

Olivier Levyne (2020)

Limits of the DCF approach

- Possibility to fine-tune the discount rate i.e. the WACC according to the assumptions that are taken into account for the market risk premium and for the beta
- Uncertainty of future FCF
- Book value of debt versus economic value of equity

Usefulness of Real Options for Corporate Valuation purpose

- In options pricing models (Black \& Scholes, Cox-Ross-Rubinstein...)
- Discounting based on an undisputable risk-free rate
- No use to estimate future FCF: only their volatility is considered
- Possibility to get the economic value of debt based on an option pricing models

Other applications for valuation purpose: option to exit, patent, option du exit a joint venture, oil field concession...

Equity value according to Black \& Scholes

- Assumption: debt = zero coupon
- Implicit right for the shareholders
- Repay the debt to buy the assets, when the debt is maturing, if the EV is higher than the nominal value of the debt to be repaid (D)

$\mathrm{S}=\mathrm{EV}$	120
$\mathrm{E}=\mathrm{D}$	100
r discrete	$2,00 \%$
r continuous	$1,98 \%$
τ	10
σ	40%
$\mathrm{~d}_{1}$	0,93
$\mathrm{~d}_{2}$	$-0,33$
$\Phi\left(\mathrm{~d}_{1}\right)$	0,82
$\Phi\left(\mathrm{~d}_{1}\right)$	0,37
Probability of bankruptcy	63%
$\mathbf{C}=$ Equity by B\&S	$\mathbf{6 9}$

$\mathrm{E}=\mathrm{D} 100$
r discrete $2,00 \%$

τ	10
σ	

$\mathrm{d}_{1} \quad 0,93$
$\mathrm{d}_{2} \quad-0,33$
$\Phi\left(\mathrm{d}_{1}\right)$

Probability of bankruptcy 63\%
C = Equity by B\&S 69

- Abandon the firm to its lenders, if $\mathrm{EV}<\mathrm{D}$, thanks to the limited liability of shareholders
- Consequence: wealth of shareholders = premium of a call on assets, its strike price being the nominal value of the debt to be repaid
- $S=$ spot price of the underlying asset $=E V$
- $\mathrm{E}=$ strike price $=$ amount to be paid should the call be exercised $=\mathrm{D}$
- $\tau=$ debt's maturity, in years
- $\sigma=$ volatility of the underlying asset $=$ EV's volatility
- $r=$ risk-free rate, in continuous time
- Formula : Equity value $=E V . \Phi\left(d_{1}\right)-D e^{-r \tau} \Phi\left(d_{2}\right)$

$$
\begin{aligned}
& d_{1}=\frac{\ln \left(\frac{E V}{D}\right)+\left(r+\frac{\sigma^{2}}{2}\right) \cdot \tau}{\sigma \sqrt{\tau}}, d_{2}=d_{1}-\sigma \sqrt{\tau} \\
& \Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t
\end{aligned}
$$

Debt value and Merton's contributions

- Notations
- $D=$ nominal value of the debt to be repaid
- $\mathrm{B}=$ economic value of debt
- Reminder: Equity value $=E V . \Phi\left(d_{1}\right)-D e^{-r \tau} \Phi\left(d_{2}\right)$
- $\Phi\left(d_{2}\right)=$ probability for the shareholders to exercise their call = probability for the firm to be "in bonis"
- 1- $\Phi\left(d_{2}\right)=\Phi\left(-d_{2}\right)$ = probability of bankruptcy
- $\mathrm{B}=\mathrm{EV}-$ Equity value
- $\mathrm{B}=E V \cdot \Phi\left(-d_{1}\right)+D e^{-r \tau} \Phi\left(d_{2}\right)$
- Spread on corporate debt = R (full cost of debt) - r (risk free rate)
- $\mathrm{R}-\mathrm{r}=-\frac{1}{\tau} \ln \left[\Phi\left(d_{2}\right)+\frac{E V}{D e^{-r \tau}} \Phi\left(-d_{1}\right)\right]$
- Breakdown of the economic value of debt
$B=D e^{-r \tau}-\Phi\left(-d_{2}\right)\left[D e^{-r \tau}-\frac{\Phi\left(-d_{1}\right)}{\Phi\left(-d_{2}\right)} E V\right]$
$\frac{\Phi\left(-d_{1}\right)}{\Phi\left(-d_{2}\right)}=$ recovery rate given default
$D e^{-r \tau}-\frac{\Phi\left(-d_{1}\right)}{\Phi\left(-d_{2}\right)} E V=$ Loss Given Default

Option to expand

- Acquisition of a subsidiary in Uruguay to test the South American market
- Price consideration: 100
- DCF valuation: 90
- $\mathrm{NPV}=-10$
- Investment in Uruguay to be looked upon as an option to buy a bigger subsidiary in 3 years in Brazil for a consideration of 1000 (to be paid in 3 years), whereas its DCF value, which has just been calculated, is 900 . The volatility of its FCF is 40% and the risk-free rate is 2%
- $E=1000$
- $\mathrm{S}=900$
- $\tau=3$ years
- $\sigma=40 \%$
- $r=2 \%$
- Value based on Black \& Scholes = 229
- Adjusted NAV $=-10+229=119>0$

S	900
E	1000
r discrete	$2,00 \%$
r continuous $=\ln (1+\mathrm{r}$ discrete $)$	$1,98 \%$
τ	3
σ	40%
d1	0,28
d2	$-0,41$
$\Phi\left(\mathrm{~d}_{1}\right)$	0,61
$\Phi\left(\mathrm{~d}_{2}\right)$	0,34
\mathbf{C} by B\&S	$\mathbf{2 2 9}$

Patent's value

$\mathrm{S}=\mathrm{EV}$	800
Annual cost of delay $=1 / \tau=\mathrm{q}$	10\%
$S^{\prime}=E V . \exp ^{-1 / \tau \tau}=E V . e^{-1}$	294
$\mathrm{E}=\mathrm{I}_{0}$	1000
r discrete	2,00\%
r continuous	1,98\%
τ	10
σ	40\%
d1	-0,18
d2	-1,44
$\Phi\left(\mathrm{d}_{1}\right)$	0,43
$\Phi\left(\mathrm{d}_{2}\right)$	0,07
Expected future value of $\mathrm{EV}=\mathrm{EV} . \mathrm{e}^{\text {rt }} . \Phi\left(\mathrm{d}_{1}\right)$	154
Expected cash outfow $=\mathrm{I}_{0} \cdot \Phi\left(\mathrm{~d}_{2}\right)$	75
EV.e ${ }^{\text {tr }} . \Phi\left(\mathrm{d}_{1}\right)-\mathrm{I}_{0} \cdot \Phi(\mathrm{~d} 2)$	80
$\mathrm{e}^{-1 \mathrm{t}} .\left[\mathrm{EV} . \mathrm{e}^{\mathrm{rt}} . \Phi\left(\mathrm{d}_{1}\right)-\mathrm{I}_{0} \cdot \Phi(\mathrm{~d} 2)\right]$	65
$\mathrm{C}=$ Value of the patent	65

- Assumptions
- Possibility to buy a patent that will enable to manufacture a new drug
- CAPEX to equip the factory that will manufacture the drug: 1000
- Sum of present values of CF to be generated by the project: 800
- Volatility of CF $=40 \%$
- Lifetime of the patent: 10 years
- Risk free rate: 2%
- Patent to be looked upon as an option to equip the factory for a a consideration of 1000
- Investments to be performed when the NPV (currently amounting to 800-1000=-200) will be positive
- Possibility for the sum of present values of CF to increase and reach at least 1000, thanks to their volatility
- Merton's formula to be used in order to include the annual cost of delay $\left(\frac{1}{\tau}\right)$, to be looked upon as a dividend yield (δ) from an option pricing model's point of view: replacement, in the Black and Scholes formula, of S by S^{\prime} with

$$
S^{\prime}=S e^{-\delta \tau}=S e^{-\frac{1}{\tau} \cdot \tau}=\frac{S}{e}
$$

Value of an oil field concession

Option ref	1	2	1	2	3	4	5	6	7	8	9	10
S_{0}	93	93	93	93	93	93	93	93	93	93	93	93
Convenience yield q	0,00\%	0,00\%		0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%
$S_{0} \cdot \mathrm{e}^{-q t}$	93	93		93	93	93	93	93	93	93	93	93
E	50	50	50	50	50	50	50	50	50	50	50	50
r discrete		2,00\%		2,00\%	2,00\%	2,00\%	2,00\%	2,00\%	2,00\%	2,00\%	2,00\%	2,00\%
r continuous		1,98\%		1,98\%	1,98\%	1,98\%	1,98\%	1,98\%	1,98\%	1,98\%	1,98\%	1,98\%
σ		80,0\%		80\%	80\%	80\%	80\%	80\%	80\%	80\%	80\%	80\%
τ		5		1	2	3	4	5	6	7	8	9
d_{1}		1,30		1,20	1,15	1,18	1,24	1,30	1,36	1,42	1,48	1,53
d_{2}		-0,49		0,40	0,02	-0,20	-0,36	-0,49	-0,60	-0,70	-0,79	-0,87
$\Phi\left(\mathrm{d}_{1}\right)$		0,90		0,89	0,87	0,88	0,89	0,90	0,91	0,92	0,93	0,94
$\Phi\left(\mathrm{d}_{2}\right)$		0,31		0,66	0,51	0,42	0,36	0,31	0,27	0,24	0,22	0,19
C per barrel in \$	43	70	43	50	57	62	66	70	73	75	77	79
Output capacity	5	5	1	1	1	1	1	1	1	1	1	1
C in M\$	215	349	43	50	57	62	66	70	73	75	77	79
Value of the concession (M\$)		564		653								

- RFP to get the concession of an oil field for 10 years
- Spot price of 1 barrel: $93 \$$
- Full cost to product 1 barrel: $50 \$$
- Volatility of oil: 80%
- Risk-free rate: 2%
- Installed capacity: 1 million barrels per year
- Periodicity of the decision to open the tap or not
- Once a year: then concession's value = value of a portfolio of 10 options to open the tap, the $1^{\text {st }}$ one being immediately exercised or not
- Every 5 years: then concession's value = value of a portfolio of 2 options to open the tap, the $1^{\text {st }}$ one being immediately exercised or not
- Once i.e. now: then concession's value = value of 1 call that has no time premium
$=(93-50) \times 1000000 \times 10=430 \mathrm{M} \$$
- Assumed no convenience yield

