Credit Default Swaps

Olivier Levyne (2021)

1. Principles

- Insurance against a risk of default by a reference entity that also enables to speculate on the creditworthiness of reference entity
- Default = credit event
 - Bankruptcy / Failure to pay / Repudiation / Obligation default
 - Restructuring of debt
 - Moratorium
- Right granted to the buyer of a CDS to sell bonds issued by the reference entity for the principal value of the bond
 - Choice by the buyer of the cheapest to deliver bond, with the same priority
 - Possibility of cash settlement : payment by the seller of the CDS to the buyer
 - (100-Z)% of the nominal value where Z = middle of the reference bond's price, at an agreed date, just after the credit event
 - Or L.(1-RR) where L is the principal and RR the recovery rate
- Differences with an insurance contract
 - No required ownership of the underlying bonds: possible naked CDS except for Sovereign bonds
 - No need for the CDS' seller to be a regulated entity
 - No need for the CDS' seller to maintain reserves to cover the production sold
 - No need for the CDS' seller to disclose all known risks
 - Insurance companies' risk managed by loss reserves booking based on the law of large numbers and actuarial analysis versus hedging with other CDS and underlying bond markets
 - Markt to market of CDS, introducing income statement volatility which is not the case of insurance contracts
 - Assumed cancellation of an insurance contract when the buyer stops paying premium versus unwound of CDS contract
- Regular payments (quarterly payments in general) by the buyer to the seller
 - Until the end of the life of the CDS or till a credit event
 - Usual final accrual payment given payments in arrears: half of the annual payment due if default occurs halfway
- Watchdog in charge of CDS regulation : International Swaps and Derivative Association (ISDA)

2. Example of speculation

- Purchase of CDS by a hedge fund from a bank
 - Notional amount: 10 M€
 - CDS spread: 500 bps
 - Quarterly installments
 - Amount to be paid: 5% x 10 M€ = 500,000 € / year ie 125,000 € / quarter
 - Total payments assuming no default: 5 x 500,000 = 2.5 M€
- Action after 1 year assuming a widening of the spread from 500 bps to 1,500 bps
 - Sale of CDS for 1 year to the bank
 - Net Cash Flow for the hedge fund over the 2 first years: $(1x15\%x10 M \in -2x 5\% x 10 M \in) = 1.5 M \in -1.0 M \in = 0.5 M \in$

3. Default intensity

3.1. Based on historical data (real world)

Cumulative average default rates (%): 1970-1983

	1	2	3	4	5	7	10
Aaa	0.00	0.00	0.00	0.04	0.12	0.29	0.62
Aa	0.02	0.03	0.06	0.15	0.24	0.43	0.68
А	0.02	0.09	0.23	0.38	0.54	0.91	1.59
Baa	0.20	0.57	1.03	1.62	2.16	3.24	5.10
Ва	1.26	3.48	6.00	8.59	11.17	15.44	21.01
В	6.21	13.76	20.65	26.66	31.99	40.79	50.02
Caa	23.65	37.20	48.02	55.56	60.83	69.36	77.91

- Example for a Caa bond
 - Proba to default during Y3: 48.02%-37.20%=10.82% = P(A)
 - Non conditional probability of default
 - Proba of default seen from t=0
 - Survival proba till end of Y2: 100%-37.20%=62.80% = P(B)
 - Proba to default in Y3 assuming no default before:
 - $P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{10.82\%}{62.80\%} = 17.23\%$
 - P(A/B) = default intensity for the 3rd year ie between the end of the 2nd year and the end of the 3rd year

- General case
 - $\bar{\lambda}(t)$: average default intensity between 0 et t
 - $\lambda(t)$: default intensity on time t
 - Definition of $\lambda(t)$ so that $\lambda(t)$. Δt = probability to default between t and $t + \Delta t$
 - *V*(*t*): cumulative survival probability till time *t* ie probability not to have any default before time *t*

•
$$V(t + \Delta t) - V(t) = -\lambda(t) \cdot V(t) \cdot \Delta t$$

- Going to the limit: $\frac{dV(t)}{V(t)} = -\lambda(t) dt$
- $\int_0^t \frac{dV(\tau)}{V(\tau)} = \int_0^t -\lambda(\tau) d\tau = \ln[V(t)]$

•
$$V(t) = e^{-\int_0^t \lambda(\tau) d\tau} = e^{-t \cdot \frac{1}{t-0} \int_0^t \lambda(\tau) d\tau} = e^{-t \cdot \overline{\lambda}(t)}$$

- Q(t): proba of default till time t = real world probability
 Q(t) = 1 V(t)
 - $Q(t) = 1 e^{-t.\overline{\lambda}(t)}$
- $\bar{\lambda}(t) = \frac{1}{t} \ln[1 Q(t)]$
- Example: calculation of $\overline{\lambda}(7)$ for a A bond:
 - $\bar{\lambda}(7) = \frac{1}{7} \ln[1 Q(7)] = \frac{1}{7} \ln[1 0.0091] = 0.13\%$

3. Default intensity 3.2. Based on bond prices (risk neutral approach)

Rating	Real-world default	Risk-neutral default	Ratio	Difference
	probability per yr (bps)	probability per yr (bps)		
Aaa	4	67	16.8	63
Aa	6	78	13.0	72
А	13	128	9.8	115
Baa	47	238	5.1	191
Ba	240	507	2.1	267
В	749	902	1.2	153
Caa	1690	2130	1.3	440

- Notations
 - s: CDS' spread
 - RR: recovery rate
 - *h*: probability of default for a given year = default intensity
- Formula: $h = \frac{s}{1-RR}$
- Example:
 - RR = 40%
 - Risk free rate
 - 7Y swap rate 10bp
 - 5.605% 0.10% = 5.505%
 - Rate for 7Y A bonds: 6.274%

•
$$h = \frac{6.274\% - 5.505\%}{1 - 40\%} = 1.28\%$$

- Default intensity to be used
 - Valuation of CDS and sensitivity analysis of their price to changes in the credit risk: risk neutral probability
 - Estimate of potential losses in various scenarii: real world probability

4. Recovery rates

- Bond's recovery rate (RR) for a bond: price of the bond immediately after default as a percent of its face value
- Average RR by asset class according to Moody's (1982 -2003)
 - Senior secured 51.6%
 - Senior unsecured 36.1%
 - Senior subordinated 32.5%
 - Subordinated 31.1%
 - Junior subordinated 24.5%

5. Valuation example

Risk free rate				5%				
Recovery Rate given default					40%			
Default occurrence					Halfway through a year			
CDS payment				End of the ye				
Probability of default during a year conditional on I					2%			
CDS spread =	yearly payme	default	S					
Time	Default	Survival						
(Years)	probability	probability						
1	0,0200	0,9800						
2	0,0196	0,9604						
3	0,0192	0,9412						
4	0,0188	0,9224						
5	0,0184	0,9039						
PV of expect	ed payments	by the CDS' h	۱O	lder				
Time	Survival	Expected	Discount	PV of				
(Years)	probability	Payment		factor	E(payment)			
1	0,9800	0,9800	S	0,9512	0,9322	s		
2	0,9604	0,9604	S	0,9048	0,8690	s		
3	0,9412	0,9412	S	0,8607	0,8101	s		
4	0,9224	0,9224	S	0,8187	0,7552	s		
5	0,9039	0,9039	s	0,7788	0,7040	s		
Total					4,0704	S		

PV of expec	ted payoffs to	the CDS' hol	de	r given defau	ılt			
Time	Default	Recovery		Expected	Discount		PV of	
(Years)	probability	rate = RR		payoff	factor		E(payoff)	
0,5	0,0200	40%		0,0120	0,9753		0,0117	
1,5	0,0196	40%		0,0118	0,9277		0,0109	
2,5	0,0192	40%		0,0115	0,8825		0,0102	
3,5	0,0188	40%		0,0113	0,8395		0,0095	
4,5	0,0184	40%		0,0111	0,7985		0,0088	
Total							0,0511	
PV of accru	ed payments a	ssuming def	au	lt				
Time	Default	Expected		Discount	PV of			
(Years)	probability	payoff		factor	E(payoff)			
0,5	0,0200	0,0100	S	0,9753	0,0098	S		
1,5	0,0196	0,0098	S	0,9277	0,0091	S		
2,5	0,0192	0,0096	S	0,8825	0,0085	s		
3,5	0,0188	0,0094	S	0,8395	0,0079	s		
4,5	0,0184	0,0092	s	0,7985	0,0074	s		
Total					0,0426	S		
Sum of PV of payments by the CDS' holder					4,1130	s		
Sum of PV of payoffs to the CDS' holder					0,0511			
S					0,0124	=	124	bp

6. Valuation

- Notations
 - N: CDS' nominal value
 - t_i : quarter Nr i
 - *s*: spread
 - δ_i : discount factor for the payment at the end of the i^{th} quarter
 - p_i : survival probability over the $[t_{i-1}, t_i]$ period
 - *RR*: recovery rate

Description	PV (premium payment)	PV (Default payment)	Probability
Default at time t_1	0	$N(1-RR)\delta_1$	1-p ₁
Default at time t_2	$-Ns\delta_1/4$	$N(1-RR)\delta_2$	<i>p</i> ₁ (1- <i>p</i> ₂)
Default at time t_3	$-Ns(\delta_1 + \delta_2)/4$	$N(1-RR)\delta_3$	$p_1p_2(1-p_3)$
Default at time t_4	$-Ns(\delta_1 + \delta_2 + \delta_3)/4$	$N(1-RR)\delta_4$	$p_1p_2p_3(1-p_4)$
No default	$-Ns(\delta_1+\delta_2+\delta_3+\delta_4)/4$	0	$p_1p_2p_3p_4$

 $CDS \ price = N(1 - RR)[(1 - p_1)\delta_1 + p_1(1 - p_2)\delta_2 + p_1p_2(1 - p_3)\delta_3 + p_1p_2p_3(1 - p_4)\delta_4] \\ -Ns/4[p_1(1 - p_2)\delta_1 + p_1p_2(1 - p_3)(\delta_1 + \delta_2) + p_1p_2p_3(1 - p_4)(\delta_1 + \delta_2 + \delta_3) + p_1p_2p_3p_4(\delta_1 + \delta_2 + \delta_3 + \delta_4)]$

 $CDS \ price = N(1 - RR)[(1 - p_1)\delta_1 + p_1(1 - p_2)\delta_2 + p_1p_2(1 - p_3)\delta_3 + p_1p_2p_3(1 - p_4)\delta_4] \\ -Ns/4[p_1\delta_1 + p_1p_2\delta_2 + p_1p_2p_3\delta_3 + p_1p_2p_3p_4\delta_4]$

7. Forward CDS and options on CDS

- Forwards
 - Commitment to buy or sell a CDS at a future date on a given reference entity
 - In case of credit event, cancellation of the commitment
- Options
 - Payoff on expiration date based on the credit spread of the reference entity
 - Example: CDS call with a 280 bps strike and a 1Y maturity
 - If the reference entity's spread in 1Y > 280 bps: exercise of the call
 - If the reference entity's spread in 1Y < 280 bps: abandonment of the call
 - In case of credit event, cancellation of the commitment