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Greek letters 

 
Olivier Levyne (2020) 

 

 
The partial derivatives of the Black and Scholes formula provide sensitivity indicators of the 

option’s premium to small changes in some parameters: spot price of the underlying asset S, 

volatility of the underlying asset , time to expiration  and risk-free rate r. 

These parameters are often noted by Greek letters:  

− delta () for the sensitivity to S 

− vega (which is not a Greek letter) for the sensitivity to  

− theta () for the sensitivity to  

− rho () for the sensitivity to r 

As the  enables to build hedging strategies, a sensitivity of this  to a change in S is 

measured by the Gamma () 

 

 

1. Delta   

 

Let  = 
S

SC



 )(
         

with: 

C = change in the call premium 

S = change in the spot price of the underlying asset. 

 

Based on the Black and Scholes formula: 

 

 C = S(d1)–Ee-r(d2) with d1 = 


 )
2
²(ln ++ r

E
S

 and d2 = d1-   

 

x

xf



 )(
 = f’(x) hence, here: 

 

S

SC



 )(
 = C’(S) = partial derivative of C, S being the variable 

 

Moreover : d1 = 



2
²ln ++r

E
S

 = 




2
²lnln ++ re

E
S

 = 



 2

²ln +
rEe

S

 = 



 2

²
)(

ln +
−rEe

S

  

Then:  d1 = 




2
²lnln +− −rEeS

 

 

 = C’(S) = [S(d1)–Ee-r(d2)]’ = 1.[d1(S)]+S[d1(S)]’-Ee-r[d2(S)’  

 

as: {u[v(x)]}’ = u’[v(x)]. v’(x).       
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Furthermore, if (x) = 
2

1
 −

−x
t

dte 2

2

then ’(x) = 
2

1  2
²x

e
−

= f(x) 

Hence: 

 

  =  (d1) + S.f[d1(S)].d’1(S) -Ee-r.f[d2(S)].d’2 (S). 

 

But: d2(S)= d1 (S)-   then, d’2(S)= d’1 (S) 

 

And: 

)( 2df  = f(d1-  ) = 2

)( 2
1

2

1
td

e





−
−

= 22

2

1

2
1

2

1






−+− d
d

e = 22

2

1

2
1
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2

1
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



−−

eee
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2
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2

1
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


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Hence:  

)( 2df  = 
reE

S
df

−.
).( 1     

     

Then: 

 =  (d1) + S.f(d1).d’1 - Ee-r. 
reE

S
df

−.
).( 1 . d’1 . 

 

Simplifying by Ee-r and by S.f(d1).d’1: 

 

Delta of the call = 
S

C




 =  (d1)    

     

Considering 3 particular cases: 

  

1st case: call deeply in the money 

 

In other words, S is significantly higher than the present value of the strike price, based on 

continuous discounting. 

 

Then: S >> Ee-r  or
rEe

S
−

 → +. 

 = ( d1) = [



 2

²ln +
−rEe

S

] = (+) as lim lnx = + when x is narrowing +. 

But : (x) =
2

1 .  −

−x
t

dte 2

2

 ; then: (+) = 
2

1 . 
+

−

−

dte

t

2

2

= 1 

 

Conclusion: the delta of a call that is deeply in the money is equal to 1. 

The changes in the call and in the spot price of the underlying asset are alike. Then, the 

hedging of 1 share can be obtained by the sale of a deeply in the money call 
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2nd case: the call is deeply out of the money 

 

In other words, S is significantly lower than the present value of the strike, based on a 

continuous discounting: S << Ee-r or: 
rEe

S
−

 → 0 

Then:  = (d1) = [



 2

²ln +
−rEe

S

] = (-)  

Finally:  = 
2

1 . 
−

−

−

dte

t

2

2

= 0 or 
S

SC



 )(
 = 0 

 

Conclusion 

 

A portfolio of stocks can’t be hedged with deeply out of the money calls 

 

3rd case: the call is at the money  

 

In other words: S = Ee-r 

Then:  = (d1) = [



 2

²ln +
−rEe

S

] = [



2
²

] as ln1 = 0 

Hence:  = (d1) = [



2

] = [



2
] = [

2
 ] the limit of which is (0) when 

→0.  

 

Finally: (0) = 0,5 ie the limit of  is 0,5 when →0. 

 

Conclusion 

 

If the change in the share price is 1 €, the change in the call premium is 0,5. Then, a 

portfolio made of 1 share can be hedged thanks to the sale of 2 calls.  

 

Moreover, the call put parity enables to get the delta of a put. Indeed: 

 

P = C –S + reE −. .  

 

Then: 

 

Delta of the put = 
S

P




 = 

S

C




- 

S

S




+E.

S

e r



 − 

 = Delta du call – 1 – 0 = (d1) –1  

 

Finally: 

 

Delta of the put = - (-d1)  
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Example 1 

 

The spot price of a stock is 120 €; this stock is the underlying asset of options, the strike 

price of which is 100€; the expiration date is 01/11/2019, the volatility is 20% and the T-

Bonds rate is 6%. 

 

C are P are respectively call and put premiums as at 01/01/2019. They can be determined 

by the Black and Scholes formula. 

 

The risk free rate is: r = ln(1+0,06) = 0,0583 = 5,83%. 

The time to expiration is  = 
365

)2003/01/012003/11/01( −
= 0,833 year 

d1 = 
833,0.20,0

833,0).
2

²20,0
0583,0(

100

120
ln ++

 = 1,36 

 

d2 = 1,36 –0,20 833,0 = 1,17 

 

C = 120.(1,36)–100.e-0,0583x0,833 (1,17) = 25,69 € 

P = 25,69 – 120 + 100. e-0,0583x0,833 = 0,95 €. 

 

The Delta of the call is (1,36) = 0,91 and the delta of the put is -(-1,17) = -0,09. 

 

In other terms, a 1 € increase in the share price implies a 0,91 € increase in the call 

premium and a 0,09 € decrease in the put premium. 

 

Indeed, the call and put premiums corresponding to a 121 € spot price of the underlying 

asset, based on the Black and Scholes formula, are respectively 26,61 € and 0,87 €: 

 

d1 = 
833,0.20,0

833,0).
2

²20,0
0583,0(

100

121
ln ++

 = 1,40 et d2 = 1,40 - 20 833,0 = 1,22 

 

C = 121.(1,40)–100.e-0,0583x0,833 (1,22) = 26,61 € 

P = 26,61 – 120 + 100. e-0,0583x0,833 = 0,87 €. 

 

The call premium has increased by 0,92 € (narrowing the 0,91 € delta), whereas the put 

premium has decreased by 0,08 € (narrowing the -0,09 € delta). 

 

The slight c.0,01 € discrepancy between the changes in the premiums and the deltas relate 

to the way delta formulas have been obtained. Indeed, a delta is the derivative of the 

premium with respect to the spot price of the underlying asset. And the derivative has to 

be looked upon as the very small change in the premium implied by a very small change 

in the spot price of the underlying asset. Therefore, there would have been no discrepancy 

if the change in the share price had been significantly lower than 1€. 
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2.  Gamma  

 

A hedging strategy is based on the delta formula:  = (d1). 

 

But d1 is a function of S; then  is always changing because of the changes in S.  

 

Therefore, the hedging has to be adjusted accordingly with the change in S. 

 

The Gamma measures the impact of the change in S on .  

 

In other words:  = 
S


= ’(S).       

As  = (d1), ’ = [d1(S)]’ = f[d1(S)]. d1’(S) 

 

As formerly, f(x) = 
2

1 . 2
²x

e
−

is the density of the standard normal distribution. 

 

Then: 

 of the call =  
S


 = 

S

df )( 1  with d1 = 



 2

²ln +
−rEe

S

 and  f(x)  
2

1 . 2
²x

e
−

 

 

The Gamma measures the impact of the change in the spot price of the underlying asset on 

the number of calls to be sold to hedge a portfolio of shares. 

 

 is maximum when: 

 

-  is narrowing 0; 

 

- f(d1) is maximum ie d1 = 0. This happens for low maturity options ( is narrowing 0), 

and when
rEe

S
−

 = 1 ie S = Ee-r which means that the option is at the money. 

 

Conclusion 

 

The daily adjustments are the more important as hedging is based on short maturity calls 

and / or by at the money calls. 

 

Thanks to the call put parity: 

 

Gamma of the put = 
2

2

S

P




 = 

2

2

S

C




- 

2

2

S

S




+E. 

2

2

S

e r



 − 

  

= Gamma of the call – 0 – 0  

= Gamma of the call 

 

Finally: Gamma du put = gamma du call = 
S

df )( 1   
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Example 2 

 

Coming back to example 1 

 

d1 = 1,36: 

f(d1) = 
2

1 . 2

²36,1−

e = 0,16  

 

Gamma of the call and of the put = 
833,020,0120

16,0

x
 = 0,01 €. 

 

This amount is almost equal to the change in the deltas of both options: indeed, assuming 

a 1 € increase in the share price from 120 € to 121 €: 

 

Delta of the call = (1,40) = 0,92 versus 0,91 assuming a 120 € share price 

 

Delta of the put = -(-1,22) = -0,08 versus -0,09 assuming a 120 € share price 
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3. Vega  

 

The vega measures the impact of the change in  on the option premium: 

 

Vega = 


C
 = C’()   

with: 

 

C   = S(d1)–Ee-r(d2) with d1 = 



 2

²ln +
−rEe

S

 and = d1-   

 

C’() = S[d1()]’-Ee-r[d2()]’  

 

  = S.f[d1()].d’1() - Ee-r.f[d2()].d’2 () 

 

 

But: )( 2df = 
reE

S
df

−.
).( 1   

 

And : d2()= d1 ()-   ; hence: d’2()= d’1 () -   

 

Then: 

 

C’() = S.f(d1).d’1 - Ee-r.
reE

S
df

−.
).( 1 .( d’1 -  ). 

 

= S.f(d1).d’1 - Ee-r.
reE

S
df

−.
).( 1 . d’1 + Ee-r.

reE

S
df

−.
).( 1 . . 

 

Simplifying by Ee-r then by S.f(d1).d’1: 

 

Vega of the call = 

C  = S.f(d1).         

  

The Vega is maximum when  

 

- f(d1) is maximum ie when d1 = 0. Then the option is at the money; 

-  is very high which means that the expiration date is far from now. 

 

Thanks to the call-put parity 

Vega du put = 


P
 = 



C
- 



S
+E.







 −re
 = Véga du call – 0 – 0  

 

Finally: Vega of the call = vega of the put = S.f(d1).        
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Example 3 

 

Coming back to example 1, the Vega measures the change in the options premium for a 1 

ie 100% increase in volatility 

 

f(d1) = 0,16 

 

Then:  

 

Vega of the call and of the put = 833,016,0120 xx  = 17 €. 

 

Then, for a 1% increase in volatility, the vega is 0,17 €. 

 

This amount is not far from the change in the options’ premiums.  

 

Indeed, assuming a 120 € spot price of the underlying asset and a 21% volatility: 

 

d1 = 
833,0.21,0

833,0).
2

²21,0
0583,0(

100

120
ln ++

 = 1,30 

 

d2 = 1,30 –0,21 833,0 = 1,11 

 

C = 120.(1,30)–100.e-0,0583x0,833 (1,11) = 25,87 €. 

 

P = 25,87 – 120 + 100. e-0,0583x0,833 = 1,14 €. 

 

The call premium is increased by 0,18 € from 25,69 € to 25,87 €, in line with the Vega 

 

The put premium is increased by 0,18 € from 0,95 € to 1,14 €, whereas the Vega is 0,17 €. 

 



Olivier Levyne  Greek letters 

9 

 

 

4.  Theta  

 

The Theta measures the impact of the change in  on the option premium: 

Theta =  = 


C
= C’( )     

with C = S(d1)–Ee-r(d2) 

 

  = C’( ) =  S[d1( )]’+r.Ee-r[d2( )]-Ee-r[d2( )]’  

with d1 = 



 2

²ln +
−rEe

S

 and d2( ) = d1( )-  hence: : d’2( ) = d’1( )-




2
 

 

Moreover: [d1( )]’= f[d1( )].d’1( ) 

 

And: [d2( )]’= f[d2( )].d’2( ) 

 

Then: 

 

  = C’( ) =  S.f[d1( )].d’1( )+r.Ee-r[d2( )]-Ee-r .f[d2( )].d’2( ) 

 

Furthermore: )( 2df = 
reE

S
df

−.
).( 1   

In that case: 

 

   = )]([. 1 dfS .d’1( )+r.Ee-r[d2( )]-Ee-r . 



reE

S
df

−.
)].([ 1 . [d’1( )-





2
] 

= )]([. 1 dfS .d’1( )+r.Ee-r[d2( )]- )]([. 1 dfS . [d’1( )-




2
]. 

 

Simplifying by )]([. 1 dfS .d’1( ): 

 

Theta of the call  = 


C
= r.Ee-r(d2)+ )(. 1dfS .





2
     

Thanks to the call put parity: 

 

Theta of the put = 


P
 = 



C
- 



S
+E.







 −re
 = Theta of the call – 0 -r reE −.  

 

   = r.Ee-r[d2( )]+ )]([. 1 dfS .




2
-r reE −.  

 = r.Ee-r  {[d2( )]-1}+ )]([. 1 dfS .




2
 

 

Theta of the put = -r.Ee-r  (-d2)+ )(. 1dfS .




2
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Example 4 

 

Coming back to example 1: 

 

Theta of the call = 0,0583 x 100e-0,0583 x 0,833(1,36)+ 16,0100x x
833,02

20,0
 = 6,97 € 

 

Theta of the put = -0,0583 x 100e-0,0583 x 0,833(1,36)+ 16,0100x x
833,02

20,0
 = 1,42 € 

 

Theta of the call for 1 day: = -
365

97,6
 = -0,02 € 

 

Theta of the put for 1 day = - 
365

42,1
= -0,00 € 

 

Assuming the valuation is performed on 02/01/2019 (one day nearer the expiration date): 

 

 = 
365

)2003/01/022003/11/01( −
= 0,830 year 

d1 = 
830,0.20,0

830,0).
2

²20,0
0583,0(

100

120
ln ++

 = 1,36 

 

d2 = 1,36 –0,20 830,0 = 1,17 

 

C = 120.(1,36)–100.e-0,0583x0,830 (1,17) = 25,67 €. 

 

P = 25,69 – 120 + 100. e-0,0583x0,830 = 0,95 €. 

 

The call premium is reduced from 25,69 € to 25,67 €, ie by 0,02 €, corresponding to the 

theta of the call. 

 

The put is almost unchanged, which is consistent with a c.0 € theta 
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5.  Rhô  

 

The theta measures the impact of the change in r on the option premium: 

Rho =  = 
r

C




= C’( r )      

with C = S(d1)–Ee-r(d2). 

 

 = C’( r ) =  S[d1(r)]’+  Ee-r[d2(r)]-Ee-r[d2(r)]’  

With d1 = 



 2

²ln +
−rEe

S

 and d2( ) = d1( )-  hence : d’2(r) = d’1® 

 

Moreover: [d1(r)]’= f[d1(r)].d’1(r) 

 

And:[d2(r)]’= f[d2(r)].d’2(r) 

 

Then: 

 

  = C’(r) =  S.f[d1(r)].d’1(r)+  .Ee-r[d2(r)]-Ee-r .f[d2(r)].d’2(r) 

 

Furthermore: 

 

)( 2df = 
reE

S
df

−.
).( 1   

In that case: 

 

  = )]([. 1 rdfS .d’1(r)+  .Ee-r[d2(r)]-Ee-r . 
reE

S
rdf

−.
)].([ 1 . d’1(r) 

 

Simplifying by )]([. 1 rdfS .d’1(r) : 

 

Rho of the call  = 
r

C




= .Ee-r(d2)       

 

Thanks to the call put parity: 

 

Rho of the put = 
r

P




 = 

r

C




- 

r

S




+E. r

e r







 −

 = Rho of the call – 0 -  . reE −.  

 

   =  .Ee-r(d2) -  . reE −.  

 

   = - . reE −. [1-(d2)] 

 

Finally:  

 

Rho of the put = - . reE −. .(-d2)       
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Exemple 5 

 

Coming back to example 1: 

 

Rho of the call = 0,833 x 100.e-0,583x0,833(1,17) = 70 € 

 

Rho of the put = 0,833 x 100.e-0,583x0,833(-1,17) = 0,833 x 100.e-0,583x0,833[(1,17)-1] 

Rho of the put = 10 € 

 

For a 1% change in the risk-free rate: 

 

Rho of the call = 
100

70
 = 0,70 € 

 

Rho of the put = - 
100

10
= -0,10 € 

 

Assuming the risk-free rate is increased to 6,83%: 

 

d1 = 
833,0.20,0

833,0).
2

²20,0
0683,0(

100

120
ln ++

 = 1,40 

 

d2 = 1,40 –0,20 833,0 = 1,22 

 

C = 120.(1,40)–100.e-0,0683x0,833 (1,27) = 26,39 € 

 

P = 26,39 – 120 + 100. e-0,0683x0,833= 0,86 €. 

 

The call premium is increased by 0,70 € from 25,69 € to 26,39 €, which corresponds to the 

rho of the call. 

 

The put premium is reduced by 0,09 € from 0,95 € à 0,86 €, in line with the -0,10 € rho of 

the put. 
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Appendix: detailed calculations 

 
Spot price of the underlying asset : S 120 121 120 120 120

Strike price : E 100 100 100 100 100

Valuation date : t' 01/01/2019 01/01/2019 01/01/2019 02/01/2019 01/01/2019

Expiration date : t" 01/11/2019 01/11/2019 01/11/2019 01/11/2019 01/11/2019

Volatility :  20% 20% 21% 20% 20%

Risk free rate in discrete time : r' 6,00% 6,00% 6,00% 6,00% 7,07%

Time to expiration (in years) : t =(t''-t')/365 0,833 0,83 0,83 0,83 0,83

Risk free rate in continuous time : r = ln (1+r') 5,83% 5,83% 5,83% 5,83% 6,83%

1,36 1,40 1,30 1,36 1,40

1,17 1,22 1,11 1,17 1,22

(d1) 0,9125 0,9195 0,9033 0,9126 0,9195

(d2) 0,8797 0,8886 0,8662 0,8800 0,8886

Call premium: C = S.(d1)-E.exp(-rt).(d2) 25,69 26,61 25,87 25,67 26,39

Put premium: P = C-S+E.exp(-rt) 0,95 0,87 1,14 0,95 0,86

Gap on call premium 0,92 0,18 -0,02 0,70

Gap on put premium -0,08 0,18 0,00 -0,09

0,16 0,15 0,17 0,16 0,15

Greek letters

Delta

Call

 = (d1) 0,91 0,92

Change in delta 0,01

Put

 = -(-d1) -0,09 -0,08

Change in delta 0,01

Vega: call and put

V for 100% = 17,42

Véga for 1% = V / 100 0,17

Theta

Call

T for 1 year 6,97

Théta for 1 day = / 365 0,02

Put

T for 1 year 1,42

Théta for 1 day = / 365 0,00

Rhô

Call

 for 100% 69,80

Rhô for 1% =  /100 0,70

Put

 for 100% -9,54

Rhô for 1% =  /100 -0,10

Gamma (call and put) = 0,01  
     

     

       

        

 


